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Fig. 1. Spectral filtering via FRFT.
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Fig. 2. Spectral filtering via FWT.

TABLE I
COMPARISON OF NUMBER OF OPERATIONS WITH RDFT AND WALSH~
FOURIER METHODS OF SPECTRAL FILTERING

Walsh-Fourier RDFT

N Additions Multiplications Additions Multiplications
4 18 6 15 5
8 62 22 49 15
16 198 86 141 43
32 630 342 373 115
64 2070 1366 933 291
128 7126 5462 2245 707

TABLE II

COMPARISON OF NUMBER OF OPERATIONS WITH RDFT AND WALSH-
FOURIER METHODS FOR THE IMPLEMENTATION OF ZERO-PHASE FIR FILTERS

Walsh-Fourier RDFT

N Additions Mutltiplications Additions Multiplications
4 16 4 12 4
8 52 12 40 12
16 156 44 120 36
32 460 172 328 100
64 1388 684 840 260
128 4396 2732 2056 644

siderably better for all N, with increasing margin as N grows. The
reason for the growing difference can be attributed to the fact that
the blocks of the Walsh gain matrix Gy, which is processed fol-
lowing the Walsh transform, have no simplifying structure so that
they need to be directly implemented.

When the FIR filter to be implemented is zero phase, half of the
elements in the diagonal blocks of Gy are zero [2]. Similarly, in
the case of RDFT, Hy(-) is zero. Consequently, RDFT is the
transform consisting of the eigenvectors of the filter matrix in this
case. The number of multiplications M ,(N) and the number of ad-
ditions A4,(N) with the RDFT method to compute RCC of size N
become

MAN) = 2Mg(N) + N (2.8)

A(N) = 24x(N). (2.9)

Table II compares the number of operations with the RDFT using
the above equations and the Walsh-Fourier methods [2] in the case
of zero-phase FIR filters. Again, the RDFT method is considerably
better for all N, and more so as N grows.
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III. CONCLUSIONS

As the comparisons in Section II show, there is no good reason
for using the Walsh-Fourier method in spectral filtering or for the
generation of Fourier coefficients if the number of operations are
the major criterion. However, the Walsh-Fourier method may still
be useful if both the Walsh and the Fourier coefficients are to be
utilized in a particular application.
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Exact Computation of the Unwrapped Phase of a
Finite-Length Time Series

DAVID G. LONG

Abstract—McGowan and Kuc [1] recently showed that a direct re-
lationship between a time series and its unwrapped phase exists. They
proposed an algorithm for computing the unwrapped phase by count-
ing the number of sign changes in a Sturm sequence generated from
the real and imaginary parts of the DFT. Their algorithm is limited to
relatively short seq es by jcal accuracy. An extension of their
algorithm is proposed which, by using all integer arithmetic, permits
exact computation of the number of multiples of n required to deter-
mine the unwrapped phase for rational-valued time sequences of ar-
bitrary length. Since the computation is exact, the extended numerical
algorithm should be of interest when accurate phase unwrapping is
required.

I. INTRODUCTION

McGowan and Kuc [1] showed that the number of multiples of
7 which must be added to the principal value of the phase to obtain
the continuous, unwrapped phase can be uniquely determined by
counting the number of sign changes in a Sturm sequence generated
from a finite length sequence. Unfortunately, the numerical accu-
racy required for computation of the Sturm coefficients and evalu-
ation of high-order polynomials in their algorithm precludes the
application of their algorithm beyond relatively short time se-
quences. An extension of their algorithm is proposed which uses
all integer arithmetic to permit exact numerical computation of the
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multiples of 7 which must be added to the phase principal value to
obtain the unwrapped phase for rational-valued time sequences of
arbitrary length. In this correspondence, McGowan and Kuc’s di-
rect method is first restated in a simplified form. Then, the pro-
posed extensions to McGowan and Kuc’s algorithm are presented.
A brief discussion of the tradeoffs in memory and computation re-
quired versus accuracy is presented.

II. PHASE UNWRAPPING USING STURM SEQUENCES

The DFT X(w) of the real-valued, finite-length time sequence
{x(n),n=0,--- ,N-1}is
N-1

X(w) = ’230 x(n)e™m,

For0 = w = m, the phase of X(w) relative to the phase at w = 0
is
Im [X(w)
arg [X(w)] — arg [X(0)] = —arctan {Re [X(w)]} + L(w) .

The integer-valued function L (w) indicates the number of mul-
tiples of = which must be added to the principal value of the phase
of X(w) to produce a continuous phase function, i.e., the un-
wrapped phase. Assuming that X(w) has no zeros on the unit cir-
cle, as w increases through the zeros of Re [ X(w)], L(w) increases
or decreases depending on the sign changes of Re [X(w)] Im
[X(w)] in order to maintain a continuous phase function. Equiv-
alently, L(w) at w, relative to w, is the number of roots of Re
[X(w)] between w, and w; (w, < w,) in which Im [X(w)] Re
[ X(w)] goes from positive to negative minus the number of roots
in which Im [X(w)] Re [X(w)] goes from negative to positive.
This can be computed using a Sturm polynomial sequence gener-
ated from the time sequence.

Using the relationship between Chebyshev polynomials of dif-
ferent kinds, the DFT of a time sequence can be expressed in terms
of Chebyshev polynomials as

N-1 N-2

X() = 004 3 ) Uy(o) + sino 3, ) 0|

where U, (w) are Chebyshev polynomials of the second kind,

sin [(n + 1) w]

Uy(w) = (1)

sin w
with
x(N—-1) —x(N - 3)/2,

n=20
poln) = [x(}\i—snn—sllzl:);(N—n -3)]/2, 2)
x(N—-n-1)/2,
N-2=n=N-1
p(n)=x(N-n-2) 0O0<sns<sN-2. (3)

A Sturm sequence of Chebyshev polynomials { Py(w), P,(w),
***,P,(w),m =N~ 1} can be generated from the terms of 3)
which permits computation of L(w). Define the first two polyno-
mials of the Sturm sequence:

Po(a) = Z, poln) U,()

N=-2

Pi(@) = 2

n=0

pl(") Un(("’)

where the remainder is generated from the ‘‘negative remainder’’
relationship

Py (w) = Ou(w) Pw) — Py (w)
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such that the order of the (k — 1)th element of the Sturm sequence
is less than the kth element. Define Oi(w) as

O(w) = q U (w) + rU(w).

Then, using the recursive relationship between the Chebyshev
polynomials

Unii(@) = Up(w) U(w) = Uy_ (@)  n=1
Up(w) =1
yields
_ P (N - k)

& (N =k =1)

=Pk~1(N —k—1) - gpnN -k -2)
(N -k —1)

Tk

—Pi-1(0) + rnp(0) + qp (1),
n=20

=Pi-1(n) + npe(n) + g [pe(n — 1)
+pn+1)], l=n<N-k-2

Pi+i(n) =

The polynomial division algorithm indicated in (4)~(7) is repeated
until P, (w), m < N — 1 contains only constant Uj(w) terms.

The difference between the number of sign reversals in the Sturm
sequence evaluated at w, and the Sturm sequence polynomials eval-
uated at w; (0 < 0, < w, < 7) gives the number of positive to
negative changes in sign of Py(w) P (w) through the zeros of
Py(w) minus the number of positive to negative changes in sign,
ie., L(w;) — L(w;). While w, and w, can be arbitrarily chosen
on [0, 7], they are typically chosen at equally spaced intervals
corresponding to FFT spacing.

This approach to computing the unwrapped phase clearly indi-
cates that the unwrapped phase is unique in the sense that once a
value for the phase at w = 0 is determined, all other values follow.

III. NuMERICAL CONSIDERATIONS

Direct application of McGowan and Kuc’s technique can result
in numerical problems for long sequences. These problems exist
because more digits of significance are required to represent the
coefficients of the Sturm sequence polynomials than are available
in ordinary or double precision floating-point representations used
in high-level languages such as Fortran or C. Inaccuracies in the
computation of the Sturm sequence polynomial coefficients and
their evaluation at a particular o due to the loss of least significant
digits during floating-point multiplication and division can result
in the value of the evaluated polynomial having an incorrect sign.
When the number of sign changes in the Sturm sequence is counted,
an incorrect value for L(w) will be computed.

The sensitivity of McGowan and Kuc’s algorithm to numerical
accuracy can be empirically observed as the sequence length is ex-
tended. For time sequence lengths longer than 20-40 points using
ordinary floating-point representations, the computed unwrapped
phase estimate is very often incorrect. Further, the algorithm does
not incorporate accuracy checks so that errors in computing L (w)
are undetected even for short sequence lengths. The techniques
presented below eliminate the underflow problems associated with
the use of floating-point computation by using all-integer arith-
metic to permit exact computations of L (), with accuracy checks,
for arbitrary sequence lengths.

IV. ALGORITHM EXTENSION

McGowan and Kuc’s algorithm can be extended to permit exact
computation of the coefficients of the Sturm polynomials when the
time sequence takes on rational values. This is a relatively mild
restriction since signals are typically digitized to integer values. A
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sequence of rational values can always be expressed as a sequence
of integers and a multiplicative constant. The multiplicative con-
stant does not affect the phase function and can be ignored. Thus,
without loss of generality, the time sequence can be further re-
stricted to strictly integer values.

For integer-valued time sequence, the coefficients of the Che-
byshev polynomials in (2) can be expressed as integers with a mul-
tiplicative constant of 5. However, since we are interested only in
the sign of the values of the Sturm sequence, we can multiply any
of the Sturm sequence polynomials by positive constants without
affecting the number of sign changes. Thus, the multiplicative fac-
tor of 3 can be discarded. po(n) is redefined as

2x(N = 1) = x(N = 3),
n=0
x(N-n—-1)=x(N—-n-3),
l=n=N-3
x(N—-n-2),
N-2=n=s=N-1
By the same reasoning, the polynomial division algorithm in (4)-
(7) can be modified to eliminate the divisions in (4) and (5) by
scaling them by the positive constant p; (N — k — 1). This mod-
ification also avoids the difficulties of division by zero in (4) and
(5). Equations (4)-(7) become
@ =pe-1(N—k)p(N —k - 1)
ne=p(N—k=1)p(N-k-1)
=P (N = Kk)pe(N —k = 2)

—pi—1(0) pi(N — k — 1) + rp(0) + qupe(1),
n=20

—pi(n) pi(N — k — 1) + ripi(n)

+qpe(n = 1) + p(n + 1)],
l<n=<N-k-2.

Pesi(n) =

The resulting modified Sturm sequence consists of Chebyshev
polynomials with strictly integer coefficients. If integer overflow is
avoided, the integer coefficients can be computed exactly. They
can be arbitrarily scaled without affecting the results as long as
overflow or truncation errors are avoided. The number of bits re-
quired to represent the coefficients can be reduced, at the expense
of additional CPU time, by removing common factors of the coef-
ficients of P; (w). This does not affect the accuracy of the result.

We now demonstrate how to evaluate the Sturm polynomial se-
quence with sufficient accuracy to guarantee that the elements of
the evaluated Sturm sequence have the correct sign.

The inherently large dynamic range of U, (w), ( —o0, o) makes
it difficult to use in a numerical algorithm. However, noting that
the denominator of U,(w), sin w is independent of n [(1)] and is
positive for 0 < w < =, the Sturm sequence polynomials can be
evaluated using

n+1,

sin [(n + 1) ],

=0

w # 0. (8)
rather than using U,(w) without affecting the number of sign
changes in the Sturm sequence. The smaller range of V,(w) re-
duces the propagation of numerical errors when the polynomial
coefficients are truncated (discussed below).

The use of V,(w) simplifies evaluation of the Sturm sequence
polynomials since the circular symmetry of the sine function can
be exploited. This also simplifies the problem of obtaining a suf-
ficient number of digits of significance for U,(w). V,(w) can be
obtained to the desired significance by computation of the sine to
the desired accuracy or from a sine table.

Evaluation of the Sturm sequence polynomials can done with all-
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integer arithmetic by using a D-digit truncated integer representa-
tion of ¥, (w), i.e., by defining

Vi,(w) = nearest integer {V,,(m) IOD}.

The fact that | Vi, (w) — V, (@) 10°| = } can be exploited to check
the accuracy of the polynomial evaluation to ensure that a sufficient
number of digits in ¥, (w) have been retained to permit accurate
determination of the sign of the evaluated polynomial. Note that
when o is a multiple of w /2, V,(w) is an integer and the Sturm
sequence polynomials can be exactly evaluated using integer arith-
metic.
For w # 0 define,
N—k—-1

Pilw) = 2 puln) V(@) 107

N-k-1
Pi{w) = 'EO pi(n) Vi (w)
N-k-1
A = ’Z:O ai(n)
‘Pk(”)|, |V,,(w)’ # lor0
a(n) = .
0, otherwise.

P (w) represents the ideal value for the evaluated Sturm polyno-
mial element, while P;(w) is an integer-valued approximation.
Note that terms for which |V, (w)| = 1 or 0 can be computed
exactly. A, provides error bounds for P, (w):

|Pi@)| = 4 = |Puw)| = |Pi(w)] + 4

When | Pi(w)| > A, Pi(w) will have the correct sign. If, how-
ever, | Pi(w)| < A, then the correctness of the sign of Pi(w)
cannot be guaranteed. To ensure accuracy when evaluating the
Sturm sequence, A, can be computed and checked against | P{(w)|.
If this check fails, D must be increased to guarantee that Pj(w)
has the correct sign. The minimum D to guarantee the correct sign
of P;(w) depends on the value of w and the time sequence.

The number of sign changes in the modified Sturm sequence
{Pi(w)} at 0 < w and w = 0 is used to compute L(w). The
principal value of the phase at w can be computed using the first
two terms of the modified Sturm sequence evaluated at w. The un-
wrapped phase is

arg [X(w)] — arg [X(0)] = arctan {2 ??}E:; sin w}

+ L{w)7m — (N - 1o

V. Accuracy VERSUS COMPUTATION TRADEOFFS

For extremely long sequences, the number of bits required to
exactly represent the integer coefficients of the Sturm sequence
polynomials may become large. Since only the sign of the evalu-
ated polynomial is needed, the amount of storage and computation
can be reduced, with some loss in accuracy, by truncating off the
some of least significant bits of the coeflicients the P, (w)’s. The
errors introduced by truncating the coeflicients can lead to errors
in the sign of the evaluated polynomial. However, this can be con-
trolled by selecting the number of bits truncated. Techniques sim-
ilar to the one used for checking the accuracy of the polynomial
evaluation can be used to bound the resulting error and ensure nu-
merical accuracy.

VI. CONCLUSION

Using integer arithmetic, the proposed modification of Mc-
Gowan and Kuc’s technique for phase unwrapping permits exact
computation of the coefficients of the Sturm polynomial sequence
for arbitrary sequence length. By careful coding, the Sturm se-
quence can be evaluated with sufficient accuracy to guarantce the
accuracy of L(w). The algorithm has been coded and tested using
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long random sequences (greater than 100 samples). In each case,
L(w) was exactly computed even when the sequence had multiple
roots close to the unit circle. Since the computation is exact, the
extended algorithm should be of interest when accurate phase un-
wrapping is required.
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Recognition and Velocity Computation of Large
Moving Objects in Images

SABRI A. MAHMOUD, MOSTAFA S. AFIFI,
AND ROGER J. GREEN

Abstract—This work presents a method for motion detection and ve-
locity computation of large moving objects in time sequences of images.
The presented algorithm and analytical formulation of the model of
these large moving objects show the applicability and efficiency of this
method.

I. INTRODUCTION

Motion detection and velocity computation of moving objects in
time-varying images is becoming increasingly important in diverse
applications. Tracking of multitargets from video data, dust storms
or cloud tracking in weather forecasts, highway traffic monitoring,
and control of autonomous vehicles and robots are a few examples.

This work presents a method for motion detection and velocity
computation of large moving objects of any velocity in time se-
quences of images. The analytical formulation for computing the
velocities of large moving objects in a time sequence of images is
addressed and an algorithm for the velocity computation of these
moving objects is presented.

Most researchers of time-varying images use only two or three
frames of a sequence. The analysis based on a few frames misses
complete information about the motion of objects. References [8]
and [10] show that the human visual system requires an extended
frame sequence to recover the structure of moving patterns as longer
sequence of frames allows the use of velocity information in solv-
ing the problem. Researchers [6], [9] have used segment and match
techniques to acquire velocity information [6], [9]. This technique
is sensitive to segmentation errors, and the success of the algorithm
is based on accurate segmentation of static frames which is rarely
satisfied in real world scenes. References [4] and [5] used differ-
encing techniques to extract images of moving objects in a se-
quence. The most important feature of this technique is its sim-
plicity and efficiency. It has limitations as it requires the images to
be exactly registered, illumination to be invariant, and the moving
objects should be totally displaced. References [1] and [3] used
optical flow which is determined by obtaining the velocity vector
for each pixel in the image. These approaches face the problem of
selecting interesting points and their features as the stationary
background may have many interesting points. Reference [2] used
Fourier methods by applying three-dimensional Fourier transforms
and used filters for velocity detection. The target is clearly detected
if its size is one pixel only. Moving objects, however, are not lim-
ited to one pixel in size nor to one pixel per frame in velocity.

In this work, two one-dimensional time sequences are generated
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from the projections of the two-dimensional sequence on the x and
y axes. Then the two-dimensional fast Fourier transform for the
generated time sequences is computed. A peak in the spectrum for
the selected spatial frequency is detected. The temporal frequency
at which the peak is detected gives an estimate of the velocity of
the moving object. Section II covers the analytical formulations for
large moving objects in a time sequence with zero background, and
Section IIT presents an algorithm for velocity computation.

II. ANALYTICAL FORMULATION

Moving bodies in a sequence of images can be modeled as a big
moving object. In order to simplify the description of image pro-
cessing of a specific object, a binary mask 0(x, y, ) is introduced
so that the image signals are identified as time-varying functions.
The relationship between the mask and the image data is given by

8(x, y, 1) = 0(x, y, ) f(x, y. 1) + [1 = O(x, y, )] b(x, y, 1)
(1)
where g (x, y, t) is the recorded time sequence of images, f(x, y,
1) is the moving object in the time sequence, b(x, y, t) is the time-
varying background, O(x, y, r) = 1 for all pixels corresponding to
the moving object, and =0 otherwise.

In this work, the case of zero background is considered. Using
the projections of the moving object in the x and y directions, the
two-dimensional sequence is transformed to two one-dimensional
sequences. The velocity ¥ in the x — y plane is computed from the
two components V, and V, such that V = [V, I{\.]T:

y=M-1

gl{x, 1) = Zo

y=

x=N-1

gnn = 2

x=

g(x, y. 1), glx, y, 1) (2)
where N and M are the number of pixels of the image in the x and
y directions, respectively.

In previous work [7], a method was presented for computing the
velocities of two moving objects in a time sequence of images,
each of one or subpixel in size, in a specific direction. This work
extends the previous analysis to address objects of several pixels
in size. A model for this is given by

glnml =5 Asln—L—(m-mv]  (3)

where A4;, L;, m;, V;, r are the amplitudes, the initial positions, the
time frames at which the objects enter the sequence, the velocities
of the two moving objects, and the size of the moving object in
pixels, respectively, with 8[ ] as the Dirac impulse function.

Taking the two-dimensional discrete Fourier transform of (3) and
expanding the formulation, we get

irsine [(£/N) + (f/M)]M;
GIK.f]= 2 AM—
=i sinc [(fi/N) + (f/M)]
* exp (=j27KLy/N) exp (—jx[(£/N) + (f/M)]
- [M; + 2m; — 1]). (4)
The velocity of motion as given in [7] and deducible from this
equation is ¥V = —F,/K, where F, is the frequency at which the
peak of the spectrum is detected and K is the corresponding spatial
frequency.
Similarly, applying the two-dimensional Fourier transform to
8(x, 1),

K. £] —E{A u sinc [(fw’/N)'*'(fx/M)]Mxi
™ [(fa/N) + (fi/M)]
* exp (—j27K,Lyoi/N) exp (—jm[( fa/N)
+ (ft/M)] [Mxi + 2m, — 1]) (5)
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